博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
【线性代数公开课MIT Linear Algebra】 第一课 矩阵的行图像与列图像
阅读量:5240 次
发布时间:2019-06-14

本文共 723 字,大约阅读时间需要 2 分钟。

本系列笔记为方便日后自己查阅而写,更多的是个人见解,也算一种学习的复习与总结,望善始善终吧~

1. 从方程组到矩阵

这里写图片描述

矩阵的诞生是为了用一种简洁的方式表达线性方程组
个人理解来说就是为了更好的描述和解决 Ax = b
从系统的角度来理解:
A 就是我们的系统
x 就是我们的输入
b 就是我们的输出

2. row picture 行图像

矩阵分为行row和列column

顾名思义,row picture关注矩阵的行部分
row picture
将行所代表的方程以直线形式画出即可得到行图像
(童鞋们应该非常熟悉,从小到大学校教导的就是这一思维)

3. column picture 列图像

column picture关注列的部分,而一列即一个向量vector

column picture
现在问题转化为了找到一个合适的linear combination(线性组合)使得Ax = b
对应的图
这里写图片描述
vector b 即为两个col vector之和
这里又引申出当vector x任取时,我们可以获得整个xy平面,意味着无论vector b是什么都能找到对应解
(当两个col vector 平行时则不行)
* column picture的做法感觉在学校不怎么强调,但这种理解方式更有助于掌握矩阵和向量

接下来老师就把2D延伸到了3D

做法与结论都一样,那么当超过3D之后我们很难直观的描述,这时矩阵的优势便得以体现

就这样一步一步我们抽象出了Ax = b 的本质

现在我们拥有了矩阵这一概念,下面要做的便是探究其属性和寻找合适的算法用于解决问题

PS:本文图片皆来自公开课视频截图

转载于:https://www.cnblogs.com/ThreeDayMemory/p/5958719.html

你可能感兴趣的文章
python pdf转word
查看>>
文本相似度比较(网页版)
查看>>
Jenkins关闭、重启,Jenkins服务的启动、停止方法。
查看>>
CF E2 - Array and Segments (Hard version) (线段树)
查看>>
Linux SPI总线和设备驱动架构之四:SPI数据传输的队列化
查看>>
SIGPIPE并产生一个信号处理
查看>>
CentOS
查看>>
Linux pipe函数
查看>>
java equals 小记
查看>>
爬虫-通用代码框架
查看>>
2019春 软件工程实践 助教总结
查看>>
YUV 格式的视频呈现
查看>>
Android弹出框的学习
查看>>
现代程序设计 作业1
查看>>
在android开发中添加外挂字体
查看>>
Zerver是一个C#开发的Nginx+PHP+Mysql+memcached+redis绿色集成开发环境
查看>>
多线程实现资源共享的问题学习与总结
查看>>
Learning-Python【26】:反射及内置方法
查看>>
torch教程[1]用numpy实现三层全连接神经网络
查看>>
java实现哈弗曼树
查看>>